A Greedy Randomized Adaptive Search Procedure for Job Shop Scheduling

نویسنده

  • S. BINATO
چکیده

In the job shop scheduling problem (JSP), a finite set of jobs is processed on a finite set of machines. Each job is characterized by a fixed order of operations, each of which is to be processed on a specific machine for a specified duration. Each machine can process at most one job at a time and once a job initiates processing on a given machine it must complete processing uninterrupted. A schedule is an assignment of operations to time slots on the machines. The objective of the JSP is to find a schedule that minimizes the maximum completion time, or makespan, of the jobs. In this paper, we describe a greedy randomized adaptive search procedure (GRASP) for the JSP. A GRASP is a metaheuristic for combinatorial optimization. Although GRASP is a general procedure, its basic concepts are customized for the problem being solved. We describe in detail our implementation of GRASP for job shop scheduling. Further, we incorporate to the conventional GRASP two new concepts: an intensification strategy and POP (Proximate Optimality Principle) in the construction phase. These two concepts were first proposed by Fleurent & Glover (1999) in the context of the quadratic assignment problem. Computational experience on a large set of standard test problems indicates that GRASP is a competitive algorithm for finding approximate solutions of the job shop scheduling problem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simulation Modeling of Manufacturing Systems for the Serial Route and the Parallel One

In the paper we discuss the influence of the route flexibility degree, the open rate of operations and the production type coefficient on makespan. The flexible job-open shop scheduling problem FJOSP (an extension of the classical job shop scheduling) is analyzed. For the analysis of the production process we used a hybrid heuristic of the GRASP (greedy randomized adaptive search procedure) wit...

متن کامل

Parallel Strategies for Grasp with Path-relinking

A Greedy Randomized Adaptive Search Procedure (GRASP) is a metaheuristic for combinatorial optimization. It usually consists of a construction procedure based on a greedy randomized algorithm and local search. Path-relinking is an intensification strategy that explores trajectories that connect high quality solutions. We analyze two parallel strategies for GRASP with path-relinking and propose ...

متن کامل

Parallel GRASP with path-relinking for job shop scheduling

In the job shop scheduling problem (JSP), a finite set of jobs is processed on a finite set of machines. Each job is required to complete a set of operations in a fixed order. Each operation is processed on a specific machine for a fixed duration. A machine can process no more than one job at a time and once a job initiates processing on a given machine it must complete processing without inter...

متن کامل

Fuzzy Greedy Search and Job-Shop Problem

This paper describes a new metaheuristic for combinatorial optimisation problems with specific reference to the jobshop scheduling problem (JSP). A fuzzy greedy search algorithm (FGSA) which is a combination of a genetic algorithm (GA) and a greedy randomised adaptive search procedure (GRASP) is considered to solve the problem. The effectiveness and efficiency of the proposed hybrid method will...

متن کامل

A Grasp for Job Shop Scheduling

In the job shop scheduling problem (JSP), a finite set of jobs is processed on a finite set of machines. Each job is characterized by a fixed order of operations, each of which is to be processed on a specific machine for a specified duration. Each machine can process at most one job at a time and once a job initiates processing on a given machine it must complete processing uninterrupted. A sc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001